IAT: Resources

More resources – including links to papers, bibliography, more software, references, and downloads of all station data will be available shortly.

Image Analysis Toolkit: explore.mountainlegacy.ca/iat/sbsm.html


Links to full data downloads for each area

South Quirk Area – A. O. Wheeler, 1897, Stn South Quirk, IMG W97-14-7, e0082922187 (including viewshed) – 47MB.

Sinnot Area – A. O. Wheeler, 1895, Stn Sinnot 1, IMG W97-14-7, e0082922187 (viewshed not available) – 105 MB
Sinnot Area – R. J. Parlee, 1940, Stn 12, IMG 1422, e011311667 (viewshed not available) – 202 MB

All Smoke Area – A. O. Wheeler, 1895, Stn All Smoke IMG W95-5-15, e008292152  – 91 MB
Wheeler, 1895, e008292152 viewshed – 1MB

All Smoke Area – R. J. Parlee, Stn 14 (All Smoke) (viewshed not available) – 74 MB


Literature Cited

[1] A. J. Trant, B. M. Starzomski, and E. Higgs, “A publically available database for studying ecological change in mountain ecosystems,” Front. Ecol. Environ., vol. 13, no. 4, pp. 187–187, 2015, doi: 10.1890/15.WB.007. Available: http://mountainlegacy.ca/wp-content/uploads/2020/06/Front-Ecol-Environ-2015-Trant.pdf

[2] J. A. Fortin, J. T. Fisher, J. M. Rhemtulla, and E. S. Higgs, “Estimates of landscape composition from terrestrial oblique photographs suggest homogenization of Rocky Mountain landscapes over the last century,” Remote Sens. Ecol. Conserv., vol. 5, no. 3, pp. 224–236, 2019, doi: 10.1002/rse2.100. Available: https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.100

[3] J. M. Rhemtulla, R. J. Hall, E. S. Higgs, and S. E. Macdonald, “Eighty years of change: vegetation in the montane ecoregion of Jasper National Park, Alberta, Canada,” Can. J. For. Res., vol. 32, no. 11, pp. 2010–2021, 2002, doi: 10.1139/x02-112. Available: https://www.nrcresearchpress.com/doi/abs/10.1139/x02-112#.WwHxgCAh1aQ

[4] M. E. Sanseverino, M. J. Whitney, and E. S. Higgs, “Exploring Landscape Change in Mountain Environments with the Mountain Legacy Online Image Analysis Toolkit,” Mt. Res. Dev., vol. 36, no. 4, 2016, doi: 10.1659/MRD-JOURNAL-D-16-00038.1. Available: https://bioone.org/journals/Mountain-Research-and-Development/volume-36/issue-4/MRD-JOURNAL-D-16-00038.1/Exploring-Landscape-Change-in-Mountain-Environments-With-the-Mountain-Legacy/10.1659/MRD-JOURNAL-D-16-00038.1.full

[5] T. Taggart-Hodge, “A century of landscape-level changes in the Bow watershed, Alberta, Canada, and implications for flood management,” University of Victoria, 2016. Available: https://dspace.library.uvic.ca/handle/1828/7655

[6] C. Bozzini, M. Conedera, and P. Krebs, “A New Monoplotting Tool to Extract Georeferenced Vector Data and Orthorectified Raster Data from Oblique Non-Metric Photographs,” Int. J. Herit. Digit. Era, vol. 1, no. 3, pp. 499–518, 2012, doi: 10.1260/2047-4970.1.3.499. Available: https://journals.sagepub.com/doi/10.1260/2047-4970.1.3.499

[7] C. A. Stockdale, C. Bozzini, S. E. Macdonald, and E. Higgs, “Extracting ecological information from oblique angle terrestrial landscape photographs : Performance evaluation of the WSL Monoplotting Tool *,” Appl. Geogr., vol. 63, pp. 315–325, 2015, doi: 10.1016/j.apgeog.2015.07.012. Available: http://www.erichiggs.ca/uploads/4/5/2/9/45292581/applied_geography_2015_stockdale.pdf

[8] C. A. Stockdale, N. McLoughlin, M. Flannigan, and S. E. Macdonald, “Could restoration of a landscape to a pre-European historical vegetation condition reduce burn probability?,” Ecosphere, vol. 10, no. 2, 2019, doi: 10.1002/ecs2.2584. Available: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.2584

[9] M. Conedera, C. Bozzini, U. Ryter, T. Bertschinger, and P. Krebs, “Using the Monoplotting Technique for Documenting and Analyzing Natural Hazard Events,” Nat. Hazards – Risk Assess. Vulnerability Reduct., 2018, doi: 10.5772/intechopen.77321. Available: https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A19207/datastream/PDF/Conedera-2018-Using_the_monoplotting_technique_for-%28published_version%29.pdf

[10] J. Aschenwald, K. Leichter, E. Tasser, and U. Tappeiner, “Spatio-temporal landscape analysis in mountainous terrain by means of small format photography: A methodological approach,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 4, pp. 885–893, 2001, doi: 10.1109/36.917917. Available: https://www.researchgate.net/publication/3202563_Spatio-temporal_landscape_analysis_in_mountainous_terrain_by_means_of_small_format_photography_A_methodological_approach

[11] P. L. Guth and T. Craven, “Using DEMs to register oblique photographs and web cameras,” Am. Soc. Photogramm. Remote Sens. – Annu. Conf. Am. Soc. Photogramm. Remote Sens. 2006 Prospect. Geospatial Inf. Integr., vol. 1, no. July, pp. 411–421, 2006. Available: http://www.asprs.org/a/publications/proceedings/reno2006/0044.pdf

[12] J. G. Corripio, “Snow surface albedo estimation using terrestrial photography,” Int. J. Remote Sens., vol. 25, no. 24, pp. 5705–5729, 2004, doi: 10.1080/01431160410001709002. Available: https://www.researchgate.net/publication/228917100_Snow_surface_albedo_estimation_using_terrestrial_photography

[13] G. Guillet, T. Guillet, and L. Ravanel, “Camera orientation, calibration and inverse perspective with uncertainties: A Bayesian method applied to area estimation from diverse photographs,” ISPRS J. Photogramm. Remote Sens., vol. 159, no. December 2019, pp. 237–255, 2020, doi: 10.1016/j.isprsjprs.2019.11.013. Available: https://www.sciencedirect.com/science/article/pii/S0924271619302734?via%3Dihub


<center><!-- [et_pb_line_break_holder] --><iframe src="https://www.google.com/maps/d/u/0/embed?mid=1WuI2P77mvHX5aAzm2VPJF2OEr6I9yhBr" width="640" height="480"></iframe><!-- [et_pb_line_break_holder] --></center>